
Alexander Hendorf

Databases for Data-Science

Alexander C. S. Hendorf

− Senior Consultant Information Technology

− Program Chair EuroPython, PyConDE & PyData Karlsruhe,  
EuroSciPy, PSF Managing Member

− PyData Frankfurt and PyData Südwest Organiser

− Program Committee Percona Live

− MongoDB Masters / MongoDB Certified DBA

− Speaker Europe & USA MongoDB World New York / San José,
PyCon Italy, CEBIT, BI Forum, IT-Tage FFM, PyData, PyParis,
PyCon UK, Budapest BI,….

ah@koenigsweg.com
 @hendorf

Services

Data We guide our clients through development and implementation processes

of technologies and applications to analyse, evaluate and visualize

business data.

Strategy & Operations We advise SME, start-ups and public institutions on building efficient sales

structures, on process optimization and on business development.

Communication We provide sound communication strategies and creative campaigns to

communicate your content and messages authentically throughout all

channels.

Financial Service Technologies Our industry experts support clients in the financial sector in developing

powerful and compliant FinTech applications.

!
Let‘s get to know each other!

» What‘s your background?«

− Data scientist

− Database admin

− Curious Pythonista

− Consultant, decision maker (IT Executive, Consultant, Innovation
Manager, YouTube influencer)

"
Let‘s get to know each other!

» What‘s your Experience in…«

− RDBSs
− none
− some
− a lot

− Hadoop et al.
− none
− some
− a lot

− NoSQL Systems  
without Hadoop et al.
− none
− some
− a lot

#
Let‘s get to know each other!

» What‘s are you looking for?«

− Integration for data science into existing ecosystems

− Learning about databases for data science projects

− General interest / curiosity

− Just killing time until PyFiorentina

− …?

Three Angles for Databases for Data Science

− Choosing a database for data science projects

− Evaluating an existing database for data science requirements

− How to integrate into an existing ecosystem

$

„How deeply do data science &
data base understand each other?.“

$
Ask Google:

Data Scientist? Database Admin?

%#&'

()*+ ,

https://xkcd.com/1838/

What are the Benefits of a Database for Data Science Anyway?

− Common source of data

− Avoiding redundancy (e.g. files)

− Persistence

− Optimized for handling and accessing data for decades

− Scalability

− Staying very close to the data

A Quick Recap on Database History

− 1960s, navigational DBMS (disks & drums)

− 1970s, relational DBMS

− 1980s, on the desktop

− 1990s, object-oriented

− 2000s, NoSQL

Relational Databases

− Records are organised into tables

− Rows of these table are identified by unique keys

− Data spans multiple tables, linked via ids

− Data is ideally normalised

− Data can be denormalized for performance

− Transactions are ACID [Atomic, Consistent , Isolated, Durable]

https://xkcd.com/927/

Relational Databases Benefits

− Widely used and supported

− Normalized data

− Comprehensive querying via SQL language  
- though some differences between databases

− Well researched and optimized over decades

Relational Databases Downsides

− Schemas are fixed and have to be pre-defined upfront (schema-first)

− Altering schema is not trivial

− Joining tables, depending on complexity, data volume may be costly, 
also consider overhead understanding a schema with many tables

− Difficult to scale out

− Few data structures (tables, rows)

NoSQL Types

− Key-Value Store  
simplest form of a NoSQL database (no big value for data science)

− Document databases (JSON style) 
open schema 
can handle complex data structures as arrays and list

− Wide column databases, most like relational DBs: 
columns are not fixed, data is de-normalised,  
can handle complex data structures as arrays and lists

− Graph 
network of connected entities linked by edges with properties, query on properties and links

NoSQL Databases Benefits

− No need to normalise data (schema-later)

− Maintain complex data structures

− Supports data sharding

− New ways to query

− Collections can be copied

NoSQL Databases Downsides

− Eventual Consistency (is this a real problem for data science at all?)

− Flexibility requires more responsibility (schema, attribute typos)

− Complexity

A Quick Bird’s Eye View

There are hundreds of databases around nowadays.
Let’s focus on the top database systems.

https://db-engines.com

https://db-engines.com/de/ranking

NoSQL RDBMS
~10 years 40 years +

Points according to https://db-engines.com/de/ranking

https://db-engines.com/de/ranking

Consistency Models of Databases

− A tomicity

− C onsistency

− I solation

− D urability

− B

− A asic Availability

− S oft-State

− E ventual consistency

Open Source Check

− Security

− Transparency

− Engaging Collaboration

− Quality

− Auditability

− Try Before You Buy (EE)

− Rule of Thumb:  
Open Software is way more
affordable than closed

* via vendors

Open Source Enterprise Editions

Oracle x +

MySQL +-?!? +

MicroSoft SQL Server +

PostgreSQL + +*

DB2 +

MongoDB + +

Redis + +*

Cassandra + +*

HBase + +*

Amazon DynamoDB DAAS

Neo4J + +

The Contenders

Type Chosen

PostgreSQL RDBMS Top OS RDBMS

MongoDB Document-store Top NoSQL (DS)

Cassandra Wide-column store Top NoSQL (WCS)

Neo4J Graph Top NoSQL (Graph)

Relational Database Management System

Dat
aba
se

Cassandra

Graph Database

Gra
ph

https://neo4j.com/developer/guide-importing-data-and-etl/

How Hard is it to Collect Data?

Data Collection, cleaning and
restructuring Multiple data sources Data retention

PostgreSQL Depends on schema complexity Depends on schema complexity easy

MongoDB easy easy medium

Cassandra easy easy hard

Neo4J (easy) N/A easy

What about Data Types

enforced flexible enforceable

PostgreSQL yes (NoSQL feature) predefined

MongoDB possible yes yes

Cassandra yes untyped collection columns predefined

Neo4J (yes) N/A N/A

How Hard is it to Consolidate Data?

Linking Missing data Dirty data Persisting cleaned
dataset

PostgreSQL built schema pre-processing
recommended

pre-processing
recommended easy

MongoDB easy (within db) flexible post-processing flexible post-processing easy

Cassandra partitioning hard hard easy

Neo4J yes* hard hard easy

How Hard is it to Write Queries Against These Databases?

Language Basic Queries Advanced Queries

PostgreSQL SQL easy hard

MongoDB MQL query: easy
aggregation: medium

query: medium
aggregation: medium

Cassandra CSQL easy hard

Neo4J Cypher easy hard

How Hard is Querying to Learn?

Language Basic Queries Advanced Queries

PostgreSQL SQL easy hard

MongoDB MQL query: easy
aggregation: easy

query: medium
aggregation: medium

Cassandra CSQL easy-medium hard

Neo4J Cypher medium hard

SQL Benefits and Downsides

− Common standard

− Long-established

− Mother of many others e.g. CSQL, ABAP,  
Pig, SPARQL,…

− Set based logic

− Complexity increases fast

− Badly designed JOINs vs. performance

− Overhead understanding a large schema

− Set based logic

SELECT EmployeeID, FirstName, LastName, HireDate, City  
FROM Employees 
WHERE HireDate BETWEEN '1-june-1992' AND '15-december-1993'

SQL

SELECT A.SD1, B.ED1 FROM  
 
(SELECT SD1, ROW_NUMBER() OVER (ORDER BY SD1) AS RN1 FROM (SELECT T1.Start_Date AS
SD1, T2.Start_Date AS SD2 FROM (SELECT * FROM Projects ORDER BY Start_Date) T1  
 
LEFT JOIN (SELECT * FROM Projects ORDER BY Start_Date) T2  
 
ON T1.Start_Date=(T2.Start_Date+1) 
 
ORDER BY T1.Start_Date) WHERE SD2 IS NULL) A 
 
INNER JOIN  
 
(SELECT ED1, ROW_NUMBER() OVER (ORDER BY ED1) AS RN2 FROM (SELECT T1.End_Date AS
ED1, T2.Start_Date AS SD2 FROM (SELECT * FROM Projects ORDER BY Start_Date) T1  
 
LEFT JOIN (SELECT * FROM Projects ORDER BY Start_Date) T2  
 
ON T1.End_Date=(T2.Start_Date) ORDER BY T1.Start_Date) WHERE SD2 IS NULL) B 
 
ON A.RN1=B.RN2  
 
ORDER BY (B.ED1-A.SD1), A.SD1;

SELECT * FROM numberOfRequests  
 WHERE cluster = ‘cluster1’  
 AND date = ‘2015-06-05’ 
 AND datacenter = 'US_WEST_COAST' 
 AND (hour, minute) IN ((14, 0), (15, 0));

Cassandra

MATCH (c:Customer {companyName:"Drachenblut Delikatessen"})  
OPTIONAL MATCH (p:Product)<-[pu:PRODUCT]-(:Order)<-[:PURCHASED]-(c)  
RETURN p.productName, toInt(sum(pu.unitPrice * pu.quantity)) AS volume  
ORDER BY volume DESC;

Neo4J

pipeline = [
 {"$match": {"artistName": “Suppenstar"}},
 {"$sort": {„info.releaseDate: 1)])},
 {"$group": {
 "_id": {"$year": "$info.releaseDateEpoch"},
 "count": {"$sum": "1}}},
 {"$project": {"year": "$_id.year", "count": 1}}},
]

MongoDB Aggregation Pipeline

−$match

−$sort

−$limit

−$project

−$group

−$unwind

−$lookup

−WHERE | HAVING

−ORDER BY

−LIMIT

−SELECT

−GROUP BY

−(JOIN)

−LEFT OUTER JOIN

Aggregation Pipeline / SQL

How Hard is it to Run?

− Installation

− Maintenance
− Cleaning up
− Compacting

− Backup
− Replica (or continuous)
− File System backup
− Dump

Set-Up Maintenance Backup

PostgreSQL easy medium medium

MongoDB easy low easy
(Replica / CS)

Cassandra easy intense easy
(Replica)

Neo4J easy medium easy

How Hard is Run Analytics without Affecting Production Performance?

replica shard

PostgreSQL medium medium 
(if run on overnight backup)

MongoDB easy: hidden replica node medium: hidden replica node with
shard-key

Cassandra depends on number of nodes &
partitioning

depends on number of nodes &
partitioning

Neo4J medium medium

Collection

Shard1 Shard2 Shard3 Shard4

server-1 server-2 server-3 server-4

server

CollectionCollection

server server

Replica-Set
horizontal scaling: one primary + copies

Sharding
vertical scaling

split the data across nodes

one server - utilize multiple cpu + IO

"Micro-Sharding"

How Hard is it to Integrate into Existing Systems?

task type

PostgreSQL easy just an additional SQL database

MongoDB easy replica suggests multiple servers

Cassandra medium requires multiple servers

Neo4J easy just an additional database

How Hard is it to Access / Change These Systems (Authorization)?

User Auth Granularity

PostgreSQL Role-Model Field

MongoDB Role-Model Collection level

Cassandra Role-Model Table

Neo4J Fixed Roles Graph

How Hard is it to Add New Data?

Known attributes Unknown (ext.) data

PostgreSQL easy - medium medium - hard PostgreSQL also has a NoSQL feature

MongoDB easy easy

Cassandra easy easy

Neo4J easy N/A data needs to be graph

How Hard is it to Understand the Data Structure?

small system medium system extensive system

PostgreSQL easy medium (partitioned) hard

MongoDB easy easy easy - medium

Cassandra easy hard (highly partitioned) hard (highly partitioned)

Neo4J easy easy easy - medium

RowKey: john
=> (column=, value=, timestamp=1374683971220000)
=> (column=map1:doug, value='555-1579', timestamp=1374683971220000)
=> (column=map1:patricia, value='555-4326', timestamp=1374683971220000)
=> (column=list1:26017c10f48711e2801fdf9895e5d0f8, value='doug', timestamp=1374683971220000)
=> (column=list1:26017c12f48711e2801fdf9895e5d0f8, value='scott', timestamp=1374683971220000)
=> (column=set1:'patricia', value=, timestamp=1374683971220000) => (column=set1:'scott', value=,
timestamp=1374683971220000)

Cassandra

https://neo4j.com/blog/oscon-twitter-graph/

Neo4J

Relational Model Document Model

https://neo4j.com/blog/neo4j-2-0-0-m06-introducing-neo4js-browser/

How Hard is it to Handle Growth?

read capacity

PostgreSQL medium advanced

MongoDB easy medium

Cassandra medium medium

Neo4J medium medium

Some More Use Cases for Databases in Data Science

− Storing model parameters (even models)

− Documenting experiments

− Collecting performance metrics of models

− …

Conclusion

− Analyse all your real needs and focus on those

− Chose an accessible, simple solution (don‘t reach out to high)

− Do not only focus on performance

− Try, play and test before making final decisions

− If you have a very specific use case go for the specialist system

− A good choice for general purpose is MongoDB

− If you work only on graphs use Neo4J

− If you have simple tables and know SQL got for a RDBMS

My Advise If You Are New in the Database Space.

− Document store is easy to understand and maintain

− Less querying overhead for multi-dimensional data

− Aggregation pipeline
− Grouping
− $relational (LO JOIN)
− $graphLookup
− Many built-in operators

− Easy install and replicate

− Compressed storage by default, in-memory avail.

− Learning at least Basic SQL and Set Theory is a MUST

− SQLAlchemy if you work with RDBMS

Thanks for Contributing

Databases for Data Science is still an actively discussed topic in the experts‘ community.
This presentation will be constantly updated.
Newer findings and updates will be added.

Stay informed:
Follow me on Twitter @hendorf or LinkedIn
Or drop me an email ah@koenigsweg.com

−Jens Dittrich, Professor bigdata.uni-saarland.de @jensdittrich

https://twitter.com/hendorf
https://www.linkedin.com/in/alexander-c-s-hendorf-55327972/
mailto:ah@koenigsweg.com

ah@koenigsweg.com

 @hendorf

Thank you!

Q & A

