Vi
, A!;
RS % ™
S - %, \ I
o~y ‘ 4 . i

P |

\ BETTER CODE FOR |
. DATA SCIENCE

g 'a, ,»"_‘c;:ig’
ALEXANDER CS HENDORF
@ PYDATA GLOBAL 2020

KONIGSWEG

ALEXANDER C. S. HENDORF

MANAGING PARTNER & PRINCIPAL CONSULTANT
DATA SCIENCE & Al AT KONIGSWEG.

thon
F ggftwa re §
Verband

ev.

Of s8N

AH@KOENIGSWEG.COM

We do digital excellence.

STRATEGY & INNOVATION
DATA & ARTIFICIAL INTELLIGENCE

BUSINESS TRANSFORMATION &
OPERATIONS

Get in touch with our specialists.

&
PYDATA FRANKFURT ¥ryData

Frankfurt
WEDNESDAY MAY 22 18:00
TECHQUARTIER FRANKFURT

— SciKit-Learn Keynote I I

Olivier Griesel
INRIA

- Jupyter Keynote

Sylvain Corlay

Quantstack KONIGSWEG

: &
PYDATA SUDWEST wPyData

Sudwest
THU, NOV 21 18:00 - 21:30
X-HOUSE, HEIDELBERG (@MAIN STATION)

— A.l. Caramba: How to Maintain Sanity

Vincent D. Warmerdam
GoDataDriven

AEIDELBERGCEMENT

— 2119: A Data Science Escape Room

Konrad Heimpel

Getsafe KONIGSWEG

\ |

e
PyConN.DE h’ D y
-
Berlin

L L

/B
ml *'i' ==t AR L PyConDE & PyData Berlin 2021

Oct13-15 2021
bece Berlin Congress Center

KONIGSWEG

ENGINEERING MATTERS.

G

GSWE

KONI

Why do Programming Skills
Matter?

Quality Assurance

— Focus on value, not bugs

— productivity my vary by 10x*

— Maintainability

— Reusability

- * https://www.construx.com/blog/the-origins-of-10x-how-valid-is-the-underlying-research/

What about Personalities?
Tl g S PG B R il

KONIGSWEG

Some Personas

Stormy Simone

Coding to get things done studying, constantly
overexcited about the latest paper

Abstract Alec

Just left academia, high level of problem abstraction,
lacks production experience

Steady Sasa

Skilled in another programming language, looking
forward to learning new skills

Sceptical Stéphane

Skilled in another programming language, sceptical
to new things, constantly comparing

Determined Dylan

Self-taught programmer with strong domain
expertise, feels constantly not good enough as
programmer

Leading Lian

Superior who used to program back in the days tends
to throw too many good ideas in the room

Master Michi

Experienced coder and architect,
knows personal limits und unknowns

KONIGSWEG

What Workflows Do We
Need?

— Clear
— Simple
— Minimal

- Stable

How Should We Set-Up Our
Code?

— Have Principles!

Coding

Architecture

- Stack

Principles |

PEP20 The Zen of Python, by Tim Peters

>>> import this

Beautiful is better than ugly.
Explicit is better than implicit.

Simple is better than complex.
Complex is better than
complicated.

Flat is better than nested.
Sparse is better than dense.

Readability counts.

Special cases aren't special

enough to break the rules.

Although practicality beats
purity.

Errors should never pass silently.
Unless explicitly silenced.

In the face of ambiguity, refuse
the temptation to guess.

There should be one - and

preferably only one - obvious way
todoit.

Although that way may not be
obvious at first unless you're
Dutch.

Now is better than never.

Although never is often better
than *right* now.

If the implementation is hard to
explain, it's a bad idea.

If the implementation is easy to
explain, it may be a good idea.

Namespaces are one honking

great idea -- let's do more of
those!

iples Il

Architecture

(@)
o
=
a

Clear

Simple

Scalable

Independent

8
—
o
S
QL
&
S
S—
4
@]
<
+—

KONIGSWEG

(U]
w
=
wv
O

KONI

“What's wrong with about our [
currently used framework?..."

KONIGSWEG

KONIGSWEG

Principles lll
Software Stack

— Defined
— Minimal

- Stable

— Set up for experimentation

- Extendable

Stack:
Python Standard Library

— Comes with Python
— Many useful libraries

Look at standard lib first!

\

Sponsorsl

> \ﬁ s fv -

David Beazley | Keynote: : Built in Super Heroes | h
=

at PyData Chicago I R 3

2 Video: https://youtu. be/lvDLAutA88s ,

KONIGSWEG

https://youtu.be/lyDLAutA88s

59 L.« '8
| RUNBTRIREL NN ~ % cat .bash_profile
| # for brew search/mssisl gridiiesis B ©imis

i : export HOMEBREW_GITHUB_API_TOKEN="" el il i e M

Anaconda
export PATH="$PATH:/Users/hendorf/anaconda3/bin"

Jupyter
export PATH="$PATH:/Users/hendorf/.local/bin"

The next line updates PATH for the Google Cloud SDK.

if [-f '/users/hendorf/Downloads/google-cloud-sdk/path.bash.inc' 1; then source '/Users/hendorf/Downloads/google~

cloud-sdk/path.bash.inc*; fi
L | = =

>>> conda initialize >>>
!! Contents within this block are managed by 'conda init' !!
__conda_setup="4$("'/Users/hendorf/anaconda3/bin/conda' 'shell.bash' 'hook’
if [$7 -eq @); then

eval "$__conda_setup"
else

if [-f "/Users/hendorf/anaconda3/etc/profile.d/conda.sh” 1; then

. "/users/hendorf/anaconda3/etc/profile.d/conda.sh"

else
export PATH="/Users/hendorf/anaconda3/bin:$PATH"

fi
fi
unset __conda_setup
<<< conda initialize <<<

2> /dev/null)"

What About Environments?

— Spaces to program within

— Environment variables

— Config files in many places

— Bash, zsh vars setups on load

— Management with conda, pip,...
— Reproducibility

- IDE

— Environment clones to try new stuff

Spaghetti Code

>
)
(an]
(¢
L
e
Y
o
=
c
(«))
>

What Makes Code Good
or Bad?

— Readable

— Maintainable
Shareable

— Reliable

— Documented

What's Code Readability?

— Concise, descriptive names
— Explicit code
— Split long lines, 2 pages on one screen

— Break complex or long
into smaller functions

— No fancy stuff because you can
— Add line comments to provide context

— Linted with autopep8/black et al.

— Define your own style guide for stability

p: Dataclasses

Be explicit if more than one return value

Dataclasses provide useful interfaces
with benefits

What Makes Code
Maintainable?

— Consistent style and approaches

— Self-explanatory

— Single points of failure / DRY Principle
— Well origanised

— Tests

How Can | Share My Code?

- Usegit

—~ Commit often

— Use a repository (service)

— .gitignore secrets

— Guidelines how to make pull requests

— Team reviews are good

— CI/CD with auto tests and publishing

What Makes Code Reliable?

— Testing

— Systems are not reliable
use explicit Exceptions to handle

— Type hints
— Simplicity

What Does Documented
Mean?

—~ READMEs
— Docstrings
— Line Comments

— Working Example Code

— Do not state the obvious
— Concise, not chatty

— Constantly update and refactor

Breaking the Rules!

— Know when to break the rules

~ Have a good reason

-‘ — Be explicit about it

KONIGSWEG

Jupyter Notebooks to Production

KONIGSWEG

What About Jupyterlab?

— Exploratory Data Analysis
— Exploratory Code Execution
— Open Source

— Visualisation

—~ Formats / MD-Texts

— Ecosystem

Director of Artificial Intelligence and Autopilot Vision at Tesla

¢~ *- Andrej Karpathy & @karpathy - 28 Min. v
{W so | accidentally held down something and deleted all cells in this jupyter
- notebook I've been building for ~2 months, and the "undo delete cell" isn't
bringing them back. Lol.

Q 52 0 23 Q 319 &

& . Andrej Karpathy & @karpathy - 23 Min. v

tw I'm still shook. Some jupyter hotkey, somehow held down with my left
palm, just iteratively deletes everything and undo doesn't bring them back
(it creates an empty cell only). Hug your favorite notebooks and keep

them safe @
O 24 6 Q 226 O
& . Andrej Karpathy & @karpathy - 5 Min. v

W thanks everyone, | was luckily able to find a snapshot in the
.ipynb_checkpoints/ folder. You know that annoying thing you always add
to the top of your .gitignore? turns out it can actually be useful :)

© 3 y R QO 75 Rk

Aug 30 2020, https://twitter.com/karpathy/status/1299972064426651650

No Comment.

KONIGSWEG

Any Downsides Using
Notebooks?

— Code Completion
— Pointing Code Smells

— Code Versioning

— Notebooks are scripts
— Execution order
— Introspection

— Debugging

On my day]ob | move
: «{N N my hand up and down

Ah, easy! You're a Data
Scientist scrolling notebooks!

Guessing the Occupation

KONIGSWEG

What Common Antipatterns
in Notebooks?

— Wall of code
— Non-local variables

- Redundancies

— Lack of versioning

— Missing documentation

What Can 1 Do About
Wall of Code?

— Use multiple cells

— Break down into function

— Break down into multiple functions
— Classes

— Use modules

What About Non-local
Variables?

— Hard to refactor

— Hard to move code with non-local
variables

— Use function parameters

— Use classes and attributes

What Can 1 Do About
Redundancies?

— Avoid them)

— Use functions
— DRY-principle

— Constant Refactoring

How Can | Debug?

— Use Introspection

— IDE provide good debuggers

— Print statements are ok

— Logging is better

yaml.safe_dump(the_dig

__hame__ ==
style_image_path = image_dir

class Path(PurePath)
PurePath subclass that can make system call

b= | = \)L'yt_\,'“. IHIo1 CI \

mage=style_image_|

=content_imag¢

)

sf.prepare_preview()
sf.train(1)

Debug: ‘@ NeuralStyleTransfer x —
(¢4 Frames | Variables | Console = 2 X =% 2 ¥y H =
Frames Variables Q Console
M... v + 71 torch_content_image = {NoneType} None
n W e [torch_style_image = {NoneType} None
4| use_cuda = {bool} True
N v E vgg = {VGG} VGG(\n (convl_1): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n (conv1_2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=
> E convi l={ » Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
2 moonvl 2= } Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
q = > = conv2_1 = {Conv2d} Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
v R conv2:2 C i} Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
2 v blas = 128} Parameter containing:\ntensor([-0.0764, -0.1101, -0.1442, 0.0386, 0.2589, -0.0923, 0.0494, -0.0417,\n 0.0064, -0.1856, 0.1297,
> = data = {Tensor: 128} tensor([-0.0764, -0.1101, -0.1442, 0.0386, 0.2589, -0.0923, 0.0494, -0.0417,\n 0.0064, -0.1856, 0.1297,-0.0177, -0.2785, -0.019
> = device = {device} cpu
> = dtype = { } torch.float32
dl grad = {N Type} None
grad_fn = neType} None
is_cuda = {boo
is_leaf = {bool} True
is_mkldnn = ol} False

is_quantized = {bool} False

> = layout = yut) torch.strided
name = { pe} None
> i= : 1) None
output_nr = {int} 0
requires_grad = {bool} False
> E shape = {Size: 1} 128
> E T ={Tensor: 128} tensor([-0.0764, -0.1101, -0.1442, 0.0386, 0.2589, -0.0923, 0.0494, -0.0417,\n 0.0064, -0.1856, 0.1297, -0.0177, -0.2785, -0.0194,
% Protected Attributes
> i= dilation = {tuple: 2} (1,1)

| dump_patches = {bocl} False
groups = {int}1

in_channels = {int} 128
> i= kernel_size = {tuple: 2} (3, 3)
out_channels = {int} 128
> i output_padding = {tuple: 2} (0, 0)
> i= padding = {tuple: 2} (1,1)

padding_mode = {str} 'zeros'

Debug: @ NeuralStyleTransfer

Ca

v

» #iNe

Frames | Variables | Console = 2 * =% X % H
Frames Variables B}, Console
oM. v + 2 iEtargets = {list: 0}]

{3 torch_content_image = {NoneType} None
& torch_style_image = {None
1 use_cuda = {bool} True

Il <module>, Neura

e} None

v = vgg = {VGG} VGG(\n (convl1_1): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n (conv1_2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=
H > = convl_1={Conv2d} Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
> = convl_2 = {Conv2d} Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
oo > = conv2_1 = {Conv2d} Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
v E conv2_2 = {Conv2d} Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
v £ bias = {Parameter: 128} Parameter containing:\ntensor([-0.0764, -0.1101, -0.1442, 0.0386, 0.2589,-0.0923, 0.0494, -0.0417,\n 0.0064, -0.1856, 0.1297,
> EO @ Evaluate 1,0064, -0.1856, 0.1297, -0.0177, -0.2785, -0.019
z = Code fragment:
sf.vgg.conv2_1.bias.data * sf.vgg.conv2_2.bias.data
L
Press L4, U1 to navigate through the
Result:
5 v = result = {Tensor: 128} tensor([3.2588e-03, -8.6990e-03, 3.7408e-03, 3.8389e-03, 2.
> = data = {Tensor: 128} tensor([3.2588e-03, -8.6990e-03, 3.7408e-03, 3.8389%e-03, 2
S > = device = {device} cpu
> = dtype = {dtype} torch.float32
il grad = {NoneType} None
&l grad_fn = {NoneType} None
N £l is_cuda = {bool} False
> B is leaf = {bool} True)64, -0.1856, 0.1297, -0.0177, -0.2785, -0.0194,
>
> i=di (2 Close Evaluate
dui
groups = 1
&l in_channels = {int} 128
> I= kernel_size = {tuple: 2} (3, 3)
£l out_channels = {int} 128
> i= output_padding = {tuple: 2} (0, 0)
> padding = {tuple: 2} (1, 1)

{1l padding_mode = {str} 'zeros'

oLlyLE_ _ldiidyc_palll = Jdliayc_uilr / @ e it L b S W
content_image_path = image_dir /) v = vgg = {VGG} VGG(\n (conv1_1): Conv2d(3, 64, ker
optional, there is also 512 as = > = convl1_1={Conv2d} Conv2d(3, 64, kernel_size=
sf = StyleTransfer(sf: < main o > = conv1_2 = {Conv2d} Conv2d(64, 64, kernel_size
= ge=style_image_pat| i 20 > = conv2_1 = {Conv2d} Conv2d(64, 128, kernel_siz
.get_image=content_image_p: v = conv2_2 = {Conv2d} Conv2d(128, 128, kernel_si
- eval=256, v = bias = {Parameter: 128} Parameter containing
L gh=256, > = data = {Tensor: 128} tensor([-0.0764, -0.1
' > = device = {device} cpu
) . > = dtype = {dtype} torch.float32
sf.pre;.)ar'e_pr'euew() B grad = (NoneType) None
sf.train(1) B grad_fn = {NoneType} None
B8l ic ciida = {banl) Falsa
90 @ Evaluate

Code fragment:

sf.vgg.conv2_1.bias.data * s|f.vgg.conv2_2.bias.data

Result:

> = device = {device} cpu
> = dtype = {dtype} torch.float32

grad = {NoneType} None

v = result = {Tensor: 128} tensor([3.2588e-03, -8.6990e-03, 3.7408e-03, 3.8389e-03, 2.9383«...
> = data = {Tensor: 128} tensor([3.2588e-03, -8.6990e-03, 3.7408e-03, 3.8389e-03, 2.938... View

Press X4, C1 to navigate through the history

View

1101

-
LLl w
(] =
| S
[- oT0]
c
(¢(°] ° o
© > &
= c B o
(4] 5 3 5
(@) o) +
- O o m
Q 5 o
b + > 3
> 2 & 8
o n > 2

=

—

How Can | Have Shorter,
Concise Notebooks?

— Functions
— Classes
— Modules

— Magics!

— Relevant code only notebooks

Anything Else?

— Type Hints

— Decomposition

— Parallelizing execution
— Parameters as config
— Sub-classing

— Multi modules

— Descriptors

— Decorators

What Are the
Main Take-Aways?

— Good coding is as good engineering an
essential success factor

— Python offers several ways to achieve
the required quality level for a successful
implementation

— Beyond writing quality code, there are
other aspects to consider such as
personas, standardization and
architecture

— Mentors will speed up the process a lot

: _ TR .
- 3 Y o 4L g, : . o : A

ALEXANDER C. S. HENDORF

MANAGING PARTNER & PRINCIPAL CONSULTANT
DATA SCIENCE & Al AT KONIGSWEG.

Thank you!

e

IEDTRCY -] -7 W T RS YA . \ Ry
A pythonsms, Gp J8ryoo: k. Sou0nis @y 20

Verband
< o
' h

Of s8N

¢ AW, e "
R 0 @HENDORF : AH@KOENIGSWEG.COM

