
BETTER CODE FOR
DATA SCIENCE

ALEXANDER CS HENDORF
@ PYDATA GLOBAL 2020

ALEXANDER C. S. HENDORF

MANAGING PARTNER & PRINCIPAL CONSULTANT
DATA SCIENCE & AI AT KÖNIGSWEG.

PYTHON SOFTWARE FOUNDATION FELLOW, PYTHON SOFTWAREVERBAND CHAIR,
PYCONDE & PYDATA BERLIN CHAIR, LOCAL PYDATA COMMUNITY ORGANIZER

@HENDORF AH@KOENIGSWEG.COM

Konkreteres
Offering
DS

Communication

Engineering

Ethics

Value

Resources

ENGINEERING MATTERS.

Why do Programming Skills
Matter?

- Quality Assurance

- Focus on value, not bugs

- productivity my vary by 10x*

- Maintainability

- Reusability

- * https://www.construx.com/blog/the-origins-of-10x-how-valid-is-the-underlying-research/

What about Personalities?

Some Personas

Stormy Simone Coding to get things done studying, constantly
overexcited about the latest paper

Abstract Alec Just left academia, high level of problem abstraction,
lacks production experience

Steady Saša Skilled in another programming language, looking
forward to learning new skills

Sceptical Stéphane Skilled in another programming language, sceptical
to new things, constantly comparing

Determined Dylan
Self-taught programmer with strong domain
expertise, feels constantly not good enough as
programmer

Leading Lian Superior who used to program back in the days tends
to throw too many good ideas in the room

Master Michi Experienced coder and architect,
knows personal limits und unknowns

What Workflows Do We
Need?

- Clear

- Simple

- Minimal

- Stable

How Should We Set-Up Our
Code?

- Have Principles!

- Coding

- Architecture

- Stack

Principles I
PEP20 The Zen of Python, by Tim Peters

>>> import this

Beautiful is better than ugly.
Explicit is better than implicit.

Simple is better than complex.
Complex is better than
complicated.

Flat is better than nested.
Sparse is better than dense.

Readability counts.

Special cases aren't special
enough to break the rules.
Although practicality beats
purity.

Errors should never pass silently.
Unless explicitly silenced.

In the face of ambiguity, refuse
the temptation to guess.

There should be one - and
preferably only one - obvious way
to do it.

Although that way may not be
obvious at first unless you're
Dutch.

Now is better than never.

Although never is often better
than *right* now.

If the implementation is hard to
explain, it's a bad idea.

If the implementation is easy to
explain, it may be a good idea.

Namespaces are one honking
great idea -- let's do more of
those!

Principles II
Architecture

- Clear

- Simple

- Minimal

- Stable

- Scalable

- Independent

“Saw a post on LinkedIn about
that framework…"

“I have this new
framework here…"

“What’s wrong with about our
currently used framework?…"

“New!!! Quack!! New better!!!
Quack!!! Quaaaack!!!…

Principles III
Software Stack

- Defined

- Minimal

- Stable

- Set up for experimentation

- Extendable

Stack:
Python Standard Library

- Comes with Python

- Many useful libraries

- Look at standard lib first!

David Beazley | Keynote: Built in Super Heroes
at PyData Chicago
Video: https://youtu.be/lyDLAutA88s .

https://youtu.be/lyDLAutA88s

What About Environments?

- Spaces to program within

- Environment variables

- Config files in many places

- Bash, zsh vars setups on load

- Management with conda, pip,…

- Reproducibility

- IDE

- Environment clones to try new stuff

Menu of the Day: Spaghetti Code

What Makes Code Good
or Bad?

- Readable

- Maintainable

- Shareable

- Reliable

- Documented

What’s Code Readability?

- Concise, descriptive names

- Explicit code

- Split long lines, 2 pages on one screen

- Break complex or long
into smaller functions

- No fancy stuff because you can

- Add line comments to provide context

- Linted with autopep8/black et al.

- Define your own style guide for stability

Tip: Dataclasses

- Be explicit if more than one return value

- Dataclasses provide useful interfaces
with benefits

-

What Makes Code
Maintainable?

- Consistent style and approaches

- Self-explanatory

- Single points of failure / DRY Principle

- Well origanised

- Tests

How Can I Share My Code?

- Use git

- Commit often

- Use a repository (service)

- .gitignore secrets

- Guidelines how to make pull requests

- Team reviews are good

- CI/CD with auto tests and publishing

What Makes Code Reliable?

- Testing

- Systems are not reliable
use explicit Exceptions to handle

- Type hints

- Simplicity

What Does Documented
Mean?

- READMEs

- Docstrings

- Line Comments

- Working Example Code

- Do not state the obvious

- Concise, not chatty

- Constantly update and refactor

Breaking the Rules!

- Know when to break the rules

- Have a good reason

- Be explicit about it

Jupyter Notebooks to Production

What About Jupyterlab?

- Exploratory Data Analysis

- Exploratory Code Execution

- Open Source

- Visualisation

- Formats / MD-Texts

- Ecosystem

No Comment.

Director of Artificial Intelligence and Autopilot Vision at Tesla

Aug 30 2020, https://twitter.com/karpathy/status/1299972064426651650

Any Downsides Using
Notebooks?

- Code Completion

- Pointing Code Smells

- Code Versioning

- Notebooks are scripts

- Execution order

- Introspection

- Debugging

On my day job I move
my hand up and down

Ah, easy! You’re a Data
Scientist scrolling notebooks!

Guessing the Occupation

What Common Antipatterns
in Notebooks?

- Wall of code

- Non-local variables

- Redundancies

- Lack of versioning

- Missing documentation

What Can I Do About
Wall of Code?

- Use multiple cells

- Break down into function

- Break down into multiple functions

- Classes

- Use modules

What About Non-local
Variables?

- Hard to refactor

- Hard to move code with non-local
variables

- Use function parameters

- Use classes and attributes

What Can I Do About
Redundancies?

- Avoid them ;)

- Use functions

- DRY-principle

- Constant Refactoring

How Can I Debug?

- Use Introspection

- IDE provide good debuggers

- Print statements are ok

- Logging is better

Jupyter and an IDE!

- Best of both

- Very productive

- Focus on the strong suits

How Can I Have Shorter,
Concise Notebooks?

- Functions

- Classes

- Modules

- Magics!

- Relevant code only notebooks

Anything Else?

- Type Hints

- Decomposition

- Parallelizing execution

- Parameters as config

- Sub-classing

- Multi modules

- Descriptors

- Decorators

- …

What Are the
Main Take-Aways?

- Good coding is as good engineering an
essential success factor

- Python offers several ways to achieve
the required quality level for a successful
implementation

- Beyond writing quality code, there are
other aspects to consider such as
personas, standardization and
architecture

- Mentors will speed up the process a lot

ALEXANDER C. S. HENDORF

MANAGING PARTNER & PRINCIPAL CONSULTANT
DATA SCIENCE & AI AT KÖNIGSWEG.

Thank you!

@HENDORF AH@KOENIGSWEG.COM

